VCU Discrete Mathematics Seminar

Maximum average degree and relaxed coloring

Prof Gexin Yu College of William \& Mary

Wednesday, Nov. 8 1:00-1:50 4145 Harris Hall

We say a graph is $(d, d, \ldots, d, 0, \ldots, 0)$-colorable with a of d 's and b of 0 's if $V(G)$ may be partitioned into b independent sets $O_{1}, O_{2}, \ldots, O_{b}$ and a sets $D_{1}, D_{2}, \ldots, D_{a}$ whose induced graphs have maximum degree at most d. The maximum average degree, $\operatorname{mad}(G)$, of a graph G is the maximum average degree over all subgraphs of G. In this note, for nonnegative integers a, b, we show that if $\operatorname{mad}(G)<\frac{4}{3} a+b$, then G is $\left(1_{1}, 1_{2}, \ldots, 1_{a}, 0_{1}, \ldots, 0_{b}\right)$-colorable.

