VCU Discrete Mathematics Seminar

A Proof of Bertrand's Postulate

Prof Dan Cranston VCU!

Tuesday, December 2
12:30-1:20
4119 Harris Hall

Bertrand's Postulate states: For every positive integer n, there is some prime number p with $\mathrm{n}<\mathrm{p} \leqslant 2 \mathrm{n}$. This result was conjectured in 1845 by Joseph Bertrand, who verified it for all $n<3 \times 10^{6}$, and it was proved five years later by Chebyshev (nearly 50 years before the prime number theorem was proved). I'll present a beautiful proof of this result due to Paul Erdös. Here's a couplet from Paul.
Chebyshev said it, and I'll say it again. There's always a prime between \mathbf{n} and 2 n .

