VCU Discrete Mathematics Seminar

Painting squares of graphs with $\Delta^{2}-1$ colors

Prof Dan Cranston VCU!

Tuesday, October 7 12:30-1:20
 4119 Harris Hall

Brooks' Theorem states that if G is a connected graph with maximum degree Δ at least 3, then G can be colored with Δ colors. This result has been generalized to list-coloring and more general contexts. The square G^{2} of a graph G is formed from G by adding an edge between each pair of vertices at distance two. When G has maximum degree Δ, it is easy to show that G^{2} has maximum degree at most Δ^{2}; so Brooks' Theorem implies that G^{2} can be colored with Δ^{2} colors.

Cranston and Kim conjectured that we can improve this upper bound by at least 1. Specifically, they conjectured that $\chi_{\ell}\left(\mathrm{G}^{2}\right) \leqslant \Delta^{2}-1$ unless G is a Moore graph (here χ_{ℓ} denotes the list chromatic number). We prove their conjecture and survey some harder conjectures about coloring squares of graphs.

This is joint work with Landon Rabern.

