Searching for Diamonds

Jerrold R. Griggs
University of South Carolina

December 2, 2011

Abstract

Given a finite poset P, we consider the largest size $\mathrm{La}(n, P)$ of a family of subsets of $[n]:=\{1, \ldots, n\}$ that contains no (weak) subposet P. Letting P_{k} denote the k-element chain (path poset), Sperner's Theorem (1928) gives that $\mathrm{La}\left(n, P_{2}\right)=\binom{n}{\lfloor n / 2\rfloor}$, and Erdős (1945) showed more generally that $\mathrm{La}\left(n, P_{k}\right)$ is the sum of the k middle binomial coefficients in n. Gyula Katona and his collaborators obtained many significant results for other posets P; these results lead to the conjecture that $\pi(P):=\lim _{n \rightarrow \infty} \mathrm{La}(n, P) /\binom{n}{\lfloor n / 2\rfloor}$ exists for general posets P, and in fact it is an integer.

For $k \geq 2$ let D_{k} denote the k-diamond poset $\left\{A<B_{1}, \ldots, B_{k}<\right.$ $C\}$. By bounding the average number of times a random full chain meets a P-free family \mathcal{F}, called the Lubell function of \mathcal{F}, we prove that $\pi\left(D_{2}\right)<2.273$, if it exists. This is a stubborn open problem, since we expect $\pi\left(D_{2}\right)=2$. It is then surprising that, with appropriate partitions of the set of full chains, we can explicitly determine $\pi\left(D_{k}\right)$ for infinitely many values of k, and, moreover, describe the extremal D_{k}-free families. For these fortunate values of k, and for a growing collection of other posets P, we have that $\mathrm{La}(n, P)$ is a sum of middle binomial coefficients in n, while for other values of k and for most P, it seems that $\mathrm{La}(n, P)$ is far more complicated.

This is joint work with Wei-Tian Li and Linyuan Lu.

