Finding and Using Inverses.

Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$.

1. Find A^{-1} if it exists. Check.

Let $A = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix}$.

2. Find A^{-1} if it exists. Check.

Let $B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$.

3. Find B^{-1} if it exists. Check.

Let $C = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$. We will record the operations you would use to reduce A to an upper triangular matrix U.

4. Find a scaling matrix R_1 that scales the first row by $\frac{1}{2}$. Find R_1C.

5. Find a pivoting matrix R_2 that adds -4 times the first row of R_1C to the second row.
6. Find R_2R_1C. Let $R_2R_1C = U$.

7. Find R_1^{-1} and R_2^{-1}.

8. Solve the equation $R_2R_1C = U$ for C.

9. Find an lower-triangular matrix L so that $C = LU$.

10. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 3 & 7 \end{bmatrix}$. Find an LU factorization of A.